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New processing methods show promise for improved thermal conductivity in UO2 by the incorporation of
a highly-conducting material. Such composites are likely to have anisotropic microstructures which bring
new challenges to thermal conductivity simulation but also significant potential for improvement in the
thermal performance. This paper presents simulation results for the thermal conductivity of UO2/BeO
composites using statistical continuum mechanics. The results successfully capture the microstructural
heterogeneity and predict the corresponding anisotropic thermal properties. The application of statistical
continuum mechanics to materials design makes it possible to design novel anisotropic fuel pellets with
enhanced thermal conductivity in a preferred direction.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Uranium dioxide (UO2) is the most widely used nuclear fuel for
fission reactors and is expected to remain such in future reactors as
well. One of the primary limitations for present UO2 systems, which
may also limit the performance of future systems, is poor thermal
conductivity [1]. While oxide fuels such as UO2 have a high melting
point allowing high fuel centerline temperature, low thermal con-
ductivity results in high fuel temperature, increases fission gas re-
lease during irradiation and stores energy in the fuel, decreasing
safety margins in accident scenarios [2]. Low thermal conductivity
also introduces a steep temperature gradient within UO2 pellets,
resulting in large thermal stresses which in turn may initiate fuel
restructuring, plastic deformation and cracking. Further complicat-
ing reactor design, UO2 thermal conductivity decreases significantly
with increasing temperature [3–5], further decreasing the coolant
outlet temperature for the same fission rate. Regardless of the spe-
cific nuclear fuel design, the fuel is subject to temperature gradients
which affect heat removal and overall reactor performance. These
thermal gradients strongly influence the thermo-mechanical, struc-
tural and chemical behavior of the fuel. Thus, while the impact of
higher fuel thermal conductivity on overall reactor performance de-
pends greatly on the details of the specific reactor design, increased
thermal conductivity is desirable, particularly for future high-per-
formance nuclear reactor systems.

Modeling the thermal conductivity of innovative nuclear
fuel concepts with microstructures significantly different from
ll rights reserved.
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conventional UO2 is important for the development of next gener-
ation nuclear fuel materials. The temperature distribution within
fuel pellets is vital to reactor performance, including effects on heat
transfer, grain growth/restructuring, mechanical behavior, pellet/
clad interactions, fission product migration and fission gas release.
While several sophisticated techniques have been developed to
predict the fuel thermal conductivity, most of the current models
concentrate on the evolution of thermal conductivity with temper-
ature. The influence of molecular structure, lattice parameter and
conductive mechanism have been investigated thoroughly and
several empirical and theoretical laws have been proposed [6–8].
The influence of microstructure, however, has not been addressed
in the modeling of thermal conductivity because traditional fuel
pellets exhibit random microstructures and thus possess isotropic
properties. Such randomness, a hidden assumption in most current
models, does not facilitate the prediction of thermal conductivity
in fuels with engineered microstructures which can be designed
with anisotropic properties that may ultimately be preferred.

Several approaches are under development to improve the ther-
mal conductivity of UO2 fuel, including techniques that incorporate
a highly conducting phase into the UO2. For example, co-sintering
has been used to form a continuous second phase of BeO to
improve the thermal conductivity [9,10]. BeO has high thermal
conductivity and excellent chemical compatibility with UO2 and
UO2/BeO has been shown by a few groups to exhibit superior ther-
mal performance [11,12]. Other UO2 composites include UO2 with
SiC whiskers [9,10], with W continuous channels [13] or with SnO2

[14]. These composites all showed improved behavior with aniso-
tropic microstructures which are significantly different from the
traditional UO2 microstructure. In a cylindrical fuel pellets and

mailto:dli@gatech.edu
http://www.sciencedirect.com/science/journal/00223115
http://www.elsevier.com/locate/jnucmat


D.S. Li et al. / Journal of Nuclear Materials 392 (2009) 22–27 23
rods, the thermal conductivity in the radial direction is signifi-
cantly more important than that along the axial direction. Thus,
designing fuel pellets with anisotropic thermal conductivity may
be an attractive option for improved fuel and reactor performance.

Here, a statistical continuum mechanics approach is used to
evaluate the impact of an anisotropic microstructure on the ther-
mal conductivity of oxide composites. Homogenization relations
based on statistical approaches are at the heart of the microstruc-
ture sensitive design (MSD) approach proposed to facilitate formu-
lation of a highly efficient spectral linkage among microstructure
distribution functions, macroscale effective properties and process-
ing history. By linking microstructure, properties and processing,
solutions to the inverse problems encountered in the customized
design of composite materials for superior performance in targeted
applications are found [15]. The success of the first-order MSD
methodology has been demonstrated in several design applications
and is reaching maturity [16–19]. The mathematical representation
of microstructures through the probability density functions and
their linkage to thermal properties are discussed in Sections 2 and
3. The approach is then applied in Section 4 to UO2/BeO composites,
demonstrating the significant potential of both the MSD framework
for oxide composite development and that of UO2/BeO composites
with tailored microstructures for future nuclear fuels.

2. Correlation functions characterizing heterogeneous media

The microstructure of a heterogeneous medium can be de-
scribed statistically and digitized by an n-point probability distri-
bution function. Volume fraction, commonly used to capture the
complexity of a microstructure, is a de facto one-point probability
distribution function. Consider a composite with UO2 as phase 1
and a highly conducting second phase such as a BeO coating or
embedded nanoparticles (e.g., SiC or TiO2) as phase 2. Let the sam-
ple occupy a subset of space V � Rdðd ¼ 3Þ that is partitioned into
two disjoint phases: UO2 in subspace V1 and BeO in subspace V2.

These subspaces satisfy: V ¼ V1 [ V2 and V1 \ V2 ¼ U. An indicator
function Li(x) for phase i is used to identify a random point x,
located either inside or outside of phase i:

LiðxÞ ¼
1; x 2 Vi

0; otherwise:

�
ð1Þ

By definition, /i, the volume fraction for phase i, is a one-point
correlation function

/i ¼ PfLiðxÞ ¼ 1g: ð2Þ

It is clear that volume fraction alone cannot capture the whole
complexity of morphology in a random heterogeneous medium
when studying effective properties. This may be demonstrated by
the difference observed when two bounding theories, series and
parallel, are used to predict the properties for a composite with
equal constituent volume fractions. Specific details of the shape
and morphology of the microstructure, including the interaction
of the components and orientation distributions of polycrystals
(texture), must be considered to obtain an accurate prediction of
effective properties. This can only be realized using higher order
distribution functions. A two-point distribution function is defined
as a probability function when the statistics of a three-dimensional
vector,~r ¼~r2 �~r1, is investigated once attached to each set of ran-
dom points in a particular microstructure:

Pi1 i2 ð~rÞ ¼ Pi1 i2 ð~r2 �~r1Þ ¼ PfLi1 ð~r1Þ ¼ 1; Li2 ð~r2Þ ¼ 1g: ð3Þ

Here Pi1 i2 ð~r2 �~r1Þ is the probability of the event~r with vector~r1

in phase i1 and vector ~r2 in phase i2. It should be noted that, in
many cases, the medium is anisotropic and it is inappropriate to
simplify the vector to its magnitude, a scalar parameter.
The most common formula to represent the two-point correla-
tion is an exponential function proposed by Corson [20].

Pijð~rÞ ¼ v iv j þ ð�1Þiþjv iv j expð�cijrnij Þ; ð4Þ

where Pijð~rÞ is the probability of a vector~r with head in phase i and
tail in phase j. vi and vj are volume fractions of phase i and j, respec-
tively. The constants cij and nij are microstructural parameters. For a
two-phase composite (including porous materials), i and j corre-
spond to phases 1 and 2; for multiphasic materials, including com-
posites, i and j vary from 1 to the total number of phases present.
This relationship is appropriate only for random isotropic micro-
structures because the vector directions are not considered. Saheli
et al. [15] introduced a simplified form for anisotropic two-point
correlation:

Pijð~rðr; hÞ ¼ v iv j þ ð�1Þiþjv iv j expð�cijðhÞrÞ: ð5Þ

The vector~r is not only the function of its own magnitude r, but
also its direction, h, representing the angle between the vector and
the horizontal direction. The formulation is applied to two-dimen-
sional microstructures. The empirical coefficient cij, a scaling
parameter representing the correlation distance, is reformulated
by a Fourier expansion. If only the first order term is taken into
account, then,

cijðhÞ ¼ c0
ijð1þ ð1� AÞ sin hÞ; ð6Þ

where A is a material parameter that represents the degree of
anisotropy in a microstructure such that A = 1 corresponds to an iso-
tropic microstructure, and c0

ij is the reference empirical coefficient.
In this study, for an anisotropic heterogeneous sample, a three

dimensional form of the correlation function is proposed:

Pijð~rðr; h;/ÞÞ ¼ v iv j þ ð�1Þiþjv iv j expð�cijðh;/ÞrÞ: ð7Þ

The vector~r is a function of magnitude r, azimuthal angle h, and
polar angle /. This formula is used to represent the microstructure
of a heterogeneous medium.

3. Statistical continuum model for thermal conductivity

We assume that a heterogeneous medium is composed of n
constituents with different conductivities, mi, ði ¼ 1 � � �nÞ and par-
titions vi. The local heat flux q and local temperature gradient �rT
at any arbitrary point x satisfy the linear relationship such that:

qðxÞ ¼ �kðxÞ � TðxÞ; ð8Þ

where k(x) is the local thermal conductivity. The effective thermal
conductivity in the heterogeneous medium, keff, is then defined by:

hqðxÞi ¼ �keff hrTðxÞi; ð9Þ

where <. . .> denotes the ensemble average. To obtain keff, one first
defines the relationship between the localized conductivity k(x)
and the ensemble average of the thermal conductivity, k0 by intro-
ducing the polarized conductivity ~kðxÞ such that:

kðxÞ ¼ k0 þ ~kðxÞ: ð10Þ

If we define the polarized field P(x) as:

PðxÞ ¼ ~kðxÞrTðxÞ; ð11Þ

then we have:

qðxÞ ¼ �k0rTðxÞ þ PðxÞ: ð12Þ

In calculating the thermal behavior of the system, we assume
that there is no heat generated in the oxide composite. This is a sig-
nificant simplication relative to the in-service behavior of nuclear
fuel. As a result, this approach is appropriate for determining the
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effective thermal conductivities of the composite materials, but it is
not the mathematical representation that one would use to evaluate
a fuel pellet or fuel rod design. With this simplification, the heat flux
is divergence free:

r � qðxÞ ¼ 0 ¼ �k0r �rTðxÞ þ r � PðxÞ; ð13Þ

which simplifies to:

k0r � ðrTÞ ¼ r � PðxÞ: ð14Þ

Eq. (14) can be solved using a number of techniques including a
Green’s function, which results in a solution:

TðxÞ ¼ T0ðxÞ �
Z

dx0rgðx; x0ÞPðx0Þ; ð15Þ

gðx; x0Þ ¼ 1
4pr0

1
x� x0

; ð16Þ

where T0 is the reference temperature. To obtain the temperature
gradient field, Eq. (15) is differentiated:

rTðxÞ ¼ rT0 þ
Z

dx0Gðx� x0Þ � ~kðx0ÞrTðx0Þ; ð17Þ

where rT0 is the applied temperature gradient. The solution to the
Green’s function G(x � x’) is derived elsewhere [21]; here we de-
scribe a numerical routine to perform the integration over the
Green’s function for an ensemble of aggregates in a heterogeneous
medium. Because of the existence of a singular point in the integral
at x = x’, a spherical region around the singular point must be ex-
cluded. Using integration by parts and the divergence theorem,
the Green’s function G(x � x’) is expressed as:

Gðx� x0Þ ¼ �Ddðx� x0Þ þ Hðx� x0Þ; ð18Þ

where D ¼ 1
3r0

I and H ¼ 1
4pr0

3n̂n̂� I
r3 ; ð19Þ

where I is the second order identity tensor and n̂ is the unit vector of
x-x’.
Fig. 1. Computer-generated simulated microstructures of relatively isotropic, heterogene
(black phase) inclusions.
Substituting Eq. (11) into Eq. (17):

rTðxÞ ¼ rT0 þ
Z

dx0Gðx� x0Þ � ~kðx0ÞrTðx0Þ: ð20Þ

Using a Taylor series expansion and taking into account only the
first-order correction results in:

rTðxÞ ¼ rT0 þ
Z

dx0Gðx� x0Þ � ~rðrT0;hðx0ÞÞrT0: ð21Þ

The average field for state h can be calculated from the above
equation:

hrTðxÞih ¼ rT0 þ
Z

dx0Gðx� x0Þ � h~kðrT0; hðx0ÞÞihrT0; ð22Þ

The correlation function h~kðrT0;hðx0ÞÞih can be described in
terms of the conditional two-point probability density function
of state h,

h~kðrT0;hðx0ÞÞih ¼
Z

f ðr0 2 hðr0Þ r 2 hj Þ~kðrT0;hðx0ÞÞdhðr0Þ; ð23Þ

where the conditional two-point correlation function f ðr0 2 hðr0Þ r 2j
h:Þ is defined as the probability of occurrence of r’ at state h(r’) given
that r belongs to state h:

f ðr0 2 hj r 2 hij Þ ¼ Pij=Vi: ð24Þ

The corresponding two-point probability function Pij(r,r’) can be
represented as:

Pijðr; r0Þ ¼ v iv j þ ð�1Þiþjv iv j expð�cijðh;/Þjr � r0jÞ: ð25Þ

Since no assumption is used to represent the statistical distribu-
tion of constituents in the heterogeneous medium, the application
of this statistical continuum model to the prediction of thermal
conductivity covers a broad range of materials systems over a
broad range of temperatures, assuming that the thermal conduc-
tivities of the individual constituents is known.
ous composites of UO2 (white phase) with (a) 10%, (b) 40%, (c) 70% and (d) 90% BeO
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Fig. 3. Simulated thermal conductivity along the x direction of UO2/BeO composites
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are results from a Taylor model and a Reuss’ model, respectively.

D.S. Li et al. / Journal of Nuclear Materials 392 (2009) 22–27 25
4. Simulation results and discussion

The formulation is applied to the prediction of the thermal con-
ductivity of a UO2/BeO composite. The room temperature thermal
conductivity of UO2 is r1 = kUO2 = 3.5 W/(m � K) [1,3,4] and the
room temperature thermal conductivity of BeO is r2 = kBeO =
300 W/(m�K) [22]. These values are relatively temperature inde-
pendent over the range of interest.

To apply the statistical continuum mechanics formulation to
the evaluation of heterogeneous composite thermal properties, it
is necessary to hypothesize not only the relative volume fractions
of the constituent phases (in this case UO2 and BeO) but also some
specifics regarding the microstructure. For this work, representa-
tive microstructures were developed such that both the relative
volume fractions of UO2 and BeO are varied but also the degree
of anisotropy in the microstructure. Some of these microstructures
are illustrated in Figs. 1 and 2. These two series of microstructures
are simulated from two gray scale micrographs from two samples
with different anisotropy. Microstructures in Fig. 1 are from a rel-
atively isotropic sample while those in Fig. 2 are from a more
anisotropic sample. By adjusting the threshold during image seg-
mentation, binary images representing different volume fractions
of the second phase were generated. In this way, the simulated
microstructures will maintain similar anisotropy and configuration
despite varying the relative volume fractions of each phase. Thus,
the microstructures illustrated in Fig. 1(a)–(d) are nearly isotropic
examples for which only the BeO volume fraction varies, while
those in Fig. 2(a)–(d), which have similar BeO volume fractions
as in Fig. 1, are clearly anisotropic. Fig. 3 illustrates the thermal
conductivities predicted by statistical continuum model for the
series of isotropic microstructures shown in Fig. 1. Also shown
are upper-bound and lower-bound curves, where the upper-bound
curve is calculated using Taylor’s model [23] based upon an ortho-
tropic composite with the heat flowing parallel to both phases and
Fig. 2. Computer-generated simulated microstructures of anisotropic, heterogeneous com
phase) inclusions.
the lower-bound is from Reuss’ model [24] based upon the same
composite geometry but the heat flowing orthogonal (i.e., through
each phase in-series). According to the homogenization relation,
and depending on the specific microstructure design, an order-
of-magnitude increase in thermal conductivity, from 3.5 to 30 W/
(m � K), is obtained with a 10 vol.% BeO addition, and in general,
the statistical continuum model shows that the thermal behavior
of an isotropic composites with a well-dispersed conducting phase
(such as those illustrated in Fig. 1) approaches that of the idealized
upper-bound values.

The influence of microstructure, and in particular anisotropy, on
the composite thermal conductivity is investigated by varying the
degree of anisotropy for constant BeO content. The aim is to deter-
mine the possibility of increasing the thermal conductivity in one
posites of UO2 (white phase) with (a) 10%, (b) 40%, (c) 70% and (d) 90% BeO (black



Fig. 4. Simulated micrographs of two UO2/BeO composites with 30% BeO. The white area is UO2 and the black area is BeO. Both microstructures are anisotropic, with
microstructure (a) less so than microstructure (b).
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direction at the expense of another. In the case of a UO2/BeO com-
posite for a fuel pellet, the aim would be to significantly improve
the radial thermal conductivity through microstructural design.
Fig. 4(a) and (b) show simulated microstructures of two UO2/BeO
composites with a 30% BeO volume fraction but with different de-
grees of texturing (the microstructure shown in Fig. 4(a) being less
anisotropic than that in Fig. 4(b). The calculated thermal conduc-
tivities for these two microstructures, along with the values for
the isotropic case shown in Fig. 1(b), are shown in Table 1.
Table 1
Thermal conductivities of UO2/30% BeO composites with varying microstructures.

Microstructure kx (W/m � K) kz (W/m � K) kz/kx

Isotropic 89.5 89.5 1.00
Less anisotropic 87.5 91.2 1.04
More anisotropic 86.5 91.7 1.06
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The results in Table 1 illustrate that the statistical continuum
mechanics formulation captures the microstructural anisotropy
and predicts the anisotropic thermal conductivities. In sample a,
with microstructure shown in Fig. 4(a), the thermal conductivity
along z direction is 4.2% greater than that along x direction; while
in sample b, with microstructure shown in Fig. 4(b), the thermal
conductivity in the z direction is 6.1% greater than that in the x
direction. Thus, there is a �50% increase in the anisotropy of the
thermal conductivity due to the microstructural change. Micro-
structural anisotropy can directly improve thermal conductivity
in a preferred direction (at the expense of an orthogonal direction)
if the desired microstructure can be obtained through processing.

This model can be extended to the MSD framework by bridging
processing, microstructure and properties (e.g., thermal conductiv-
ity). A simplified processing path of this nature is illustrated in
Fig. 5. The left panel of Fig. 5 is property closure, illustrating the
range of properties the material system may possess. It is important
to note that it is not limited to two dimensions or two types of prop-
erties. The properties used for optimization can be selected based
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upon the material and application. In the example of nuclear fuel, it
may include nuclear performance, thermal conductivity, thermal
expansion, mechanical behavior, irradiation resistance, etc. The
right panel of Fig. 5 is microstructure space in which the micro-
structure descriptors quantitatively describe the microstructure;
each point represents an individual microstructure. Solid and dash
lines in microstructure space illustrate how the microstructures
evolve during processing. The corresponding lines in property clo-
sure illustrate how to achieve the desired properties with the target
microstructure. To fully utilize the materials design approach to
achieve the desired properties, an experimental database and cor-
responding modeling of the microstructural evolution during pro-
cessing is required. Property prediction from the microstructure
using statistical continuum models thus can facilitate fuel design
with directionally-optimized thermal, mechanical, and nuclear
performance.

5. Conclusions

The thermal conductivity of an anisotropic heterogeneous UO2/
BeO composite is predicted using a statistical continuum mechan-
ics formulation that relies on a modified two-point correlation
function to characterize the anisotropic microstructures. The re-
sults clearly show that the addition of BeO, which has very high
thermal conductivity, within UO2 matrix, can greatly enhance the
thermal performance of nuclear fuel in a preferred direction if
anisotropy can be engineered into the microstructure through pro-
cessing. Such improvements will help the development of future,
higher performance, nuclear reactor systems.

References

[1] C. Ronchi, J. Phys.: Condens. Mat. 6 (1994) L561.
[2] M. Gavrillas et al., in: Safety Features of Operating Light Water Reactors of

Western, CRC Press, 1995.
[3] C. Ronchi et al., J. Appl. Phys. 85 (1999) 776.
[4] C.G.S. Pillai, A.M. George, J. Nucl. Mater. 200 (1993) 78.
[5] J.K. Fink, J. Nucl. Mater. 279 (2000) 1.
[6] C. Ronchi, High Temp. 45 (2007) 552.
[7] C.B. Basak, A.K. Sengupta, H.S. Kamath, J. Alloy. Compd. 360 (2003) 210.
[8] J.K. Fink, J. Nucl. Mater. 279 (2000) 1.
[9] K.H. Sarma et al., J. Nucl. Mater. 352 (2006) 324.

[10] R. Latta, S.T. Revankar, A.A. Solomon, Heat Transfer Eng. 29 (2008) 357.
[11] K. McCoy, C. Mays, J. Nucl. Mater. 375 (2008) 157.
[12] S. Ishimoto et al., J. Nucl. Sci. Technol. 33 (1996) 134.
[13] J.H. Yang et al., J. Nucl. Mater. 353 (2006) 202.
[14] I.S. Kurina, V.V. Popov, V.N. Rumyantsev, Atom. Energ. 101 (2006) 802.
[15] G. Saheli, H. Garmestani, B.L. Adams, J. Comput.-Aid. Des. 11 (2005) 103.
[16] B.L. Adams et al., J. Mech. Phys. Solids 49 (2001) 1639.
[17] H. Garmestani et al., Compos.: Part B 31 (2000) 39.
[18] H. Garmestani et al., J. Mech. Phys. Solids 49 (2001) 589.
[19] S. Lin, H. Garmestani, B.L. Adams, Int. J. Solids Struct. 37 (2000) 423.
[20] P.B. Corson, J. Appl. Phys. 45 (1974) 3159.
[21] S. Torquato, Heterogeneous Materials: Microstructure and Macroscopic

Properties, Springer-Verlag, New York, 2002.
[22] G.A. Slack, S.B. Austerman, J. Appl. Phys. 42 (1971) 4713.
[23] G.I. Taylor, J. Inst. Met. 62 (1938) 307.
[24] A. Reuss, Zeitschrift Fur Angewandte Mathematik Und Mechanik 9 (1929) 49.


	Modeling thermal conductivity in UO2 with BeO additions as a function of microstructure
	Introduction
	Correlation functions characterizing heterogeneous media
	Statistical continuum model for thermal conductivity
	Simulation results and discussion
	Conclusions
	References


